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Differential Real-Space Renormalization 
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With the aid of the differential real-space method we derive exact renormalization 
group (RG) equations for the Gaussian model in d dimensions. The equations 
involve d + 1 spatially dependent nearest-neighbor interactions. We locate a 
critical fixed point and obtain the exact thermal critical index Yr = 2. A special 
trajectory of the full nonlinear RG transformation is found and the free energy 
of the corresponding initial state calculated. 
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1. I N T R O D U C T I O N  

It has recently been shown (x'2) that  it is possible within the f ramework of 

real-space renormal iza t ion  4 to rescale a lattice system infinitesimally and thus 

ob ta in  a renormal iza t ion  group (RG) t rans format ion  in differential form. In  
this way exact R G  equat ions  have been derived for the two-dimensional  Ising 
model.  The fact that  such equat ions  exist is remarkable.  It  offers the possi- 
bility to s tudy (1'2'4) for the first time the working of an exact R G  in a non-  

trivial model.  In  order to further assess the applicabil i ty of  the differential 

real-space renormal iza t ion ,  Van Saarloos et al. ~5) have used it to study the 
Ising chain in a magnet ic  field, and  Yamazaki  e ta / .  (6'7) have studied the two- 
and three-dimensional  Gauss ian  models. A recent s tudy of  van der Waals  
spin systems by Dekeyser and  Stella (8) is inspired by the same ideas. 
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In this work we consider the Gaussian model in d dimensions. We extend 
the results obtained earlier (6'7) and present details of the calculations. 
Although the Gaussian model is trivial, its R G  equations are not. By studying 
these for general d we prepare the ground for subsequent investigation of 
non-Gaussian perturbations. 

In two dimensions the differential R G  equations were derived for a 
hexagonal (or, equivalently, triangular) lattice. In this paper (Section 2) we 
consider the appropriate generalization of a hexagonal lattice to ddimensions, 
viz. a (d + 1)-hedral lattice, in which each site has d + 1 neighbors. As in the 
d = 2 case, we work in the space of Hamiltonians with nearest-neighbor 
interactions that are spatially dependent on a thermodynamic scale. The R G  
transformation can then be expressed as a set of  d + 1 partial differential 
equations for these interactions [Eqs. (34)]. For  d > 2 we find that these equa- 
tions have to be supplemented by a set of  conditions [Eqs. (36)3 which restrict 
the number  of  possible solutions. 

In Section 3 we obtain a critical fixed-point solution of the R G  trans- 
formation. We study the behavior of  the linearized R G  around the fixed point 
and obtain the exact thermal critical index Yr = 2. We also obtain a special 
solution of the full nonlinear R G  equations. In Section 4 we derive an expres- 
sion for the free energy as the trajectory integral of  an explicitly given func- 
tion. As an application we calculate the free energy for the special trajectory. 
The paper ends with a conclusion (Section 5). 

2. D E R I V A T I O N  OF THE R E N O R M A L I Z A T I O N  
G R O U P  E Q U A T I O N S  

In this section we derive a differential renormalization group (RG) trans- 
formation for the Gaussian model by means of the real-space method. Section 
2.1 summarizes the basic idea, which has been more fully exposed in Ref. 2. 
In Section 2.2 we describe the d-dimensional lattices that we shall consider. 
In Section 2.3 we derive a star-triangle transformation for such lattices. This 
transformation will play an essential role in what follows. In Section 2.4 we 
present the actual derivation of the R G  equations. This section is concluded 
with a summary. 

2.1. The Basic Idea 

In general an R G  transformation is constructed by mapping some 
original Hamiltonian ~ ,  defined on a given lattice ~, onto a new Hamil- 
tonian ~ '  defined on a lattice 50' which is identical to 5 ~ except that it has 
a larger lattice constant. In the differential real-space method one takes for 

and ~ '  two large but finite lattices, defined in a suitably chosen spatial 
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domain. In Fig. la the two-dimensional case is shown: 5 ~ and 5~' are tri- 
angular lattices confined to a triangularly shaped domain of side length L, 
and differ only in that 5 ~ has one more lattice site along each side than 5 ~ . 
The lattice constants are a and a L / ( L  - a), respectively. Clearly the lattice 
50' can be obtained from the lattice 27 shown in Fig. lb by a uniform dilation 
in space. 

It will be convenient to perform the mapping from ~ to g(Y' in two steps: 
(i) we first transform ~ to a Hamiltonian ~7 ~ defined on 27; this step contains 
the essentials of  the R G  transformation;  (ii) we obtain . ~ '  from ~ by a trivial 
dilation of the coordinate system. 

2 , 2 .  T h e  d - D i m e n s i o n a l  L a t t i c e  

The three-dimensional lattice Y can be obtained by layering up L /a  + l 

two-dimensional lattices of decreasing size along the x3 axis, as in Fig. 2. 
The layer distance is chosen such that nearest neighbors in different layers 
are again at distance a. Thus in three dimensions 5(' is a tetrahedral (i.e., fcc) 
lattice confined to a tetrahedrally shaped region of space with side of length L. 
In general the d-dimensional lattice ~ is obtained by layering up L /a  + 1 

(d - 1)-dimensional lattices of decreasing size along the xe axis. The result is 
a " (d  + 1)-hedral" lattice confined to a (d + 1)-hedrally shaped region of 
d-dimensional space, with side of  length L. The origin of  the coordinate 
system is chosen in the center of  the (d + l)-hedron. 

The two interpenetrating lattices Y and 27 form a hexagonal lattice for 

o (b) 
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Fig. 1. The two-dimensional case. (a) The lattices L~ (circles) and i e' (crosses) occupy the same 
spatial domain. Their lattice constants are a and aL/(L - a), respectively. (b) The lattice 
(crosses) goes over into ~ '  by a uniform dilation in space. 
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Fig. 2. The two-dimensional case. Two layers of the lattice L* ~ (circles) are shown, as well as 
a few sites of the lattice ~ .  

d = 2 (see Fig. 1 b), a d i amond  lattice for d = 3, and a d-dimensional  ~ hyper-  
hexagona l "  lattice in the general case. In this lattice, each site o f  5~ has d + 1 
nearest  neighbors,  all located on ~ ,  and which are at the vertices of  an ele- 
men ta ry  upward  point ing (d + 1)-hedron of  ~ .  Conversely each site o f  LP 
is the center  o f  an e lementary  downward  point ing (d + 1)-hedron of  L~. The  
vector  distance f rom a site o f  5r to a neighbor ing site of  ~ takes d + 1 possible 
values that  we denote  ae l ,  ae2 ..... a e d + l .  The  case d = 2 is shown in Fig. 3. 
In the general case the vectors e t are given by 

e t = ( e z l  , e l 2 , . . . ,  e td) ,  1 = 1,..., d + 1 (1) 

K23 

Fig. 3. The basis vectors el, the interactions Kij, and the couplings p~, shown for the two- 
dimensional case. 
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where 

and 

We have the relations 

elm=O, l <~ m <~ l - 2 

et,~_ 1 = - ( l -  1)~l_ 1 

elm = O~m, l <. m <~ d 

0~ m = [2m(m + 1)3 -1/2 

el.ez = d/E2(d + 1)3 

et'em = - 1/[2(d + 1)], 

d+l  

el = 0  
l=1 

(2) 

(3) 

l # m (4) 

2.3. A Star -Tr iangle  Transformat ion for the Gaussian Model  

The so-called star-triangle transformation for Ising models is well known 
and has been described in detail, e.g., by Syozi. (9) Here we derive an analogous 
transformation for Gaussian variables, which will play an essential role in 
what follows. 

Consider a hyperhexagonal lattice (as defined in the previous subsection) 
of infinite size, whose sites R are occupied by Gaussian spins S(R). Let there 
be an interaction of strength Pl between any pair of nearest-neighbor spins a 
distance ae~ apart (l = 1 .... , d + 1). The partition function of this system can 
be written 

R (2/r) 1/2 R (2~) 1/2 

x exp - ~215 S2(R) + ~•  ~ p i S ( R  - ae i )S (R)  (5) 
R i=1 

where the indices ~ and • distinguish the two sublattices (their sites being 
indicated by circles and crosses, respectively, in Figs. 1-3). If in Eq. (5) we 
carry out a partial trace on the spins of the sublattice • and rescale the 
remaining spin variables such that in the end all self-interactions S2(R) occur 
again with coefficient - �89 we find 

f: g = ( - 1 / 2  H o  d g ( R )  

o~ R (2~z )  1/2 

1~o  S/(R ) + ~•  ~ K q S ( R  - a e i ) S ( R  - a e f l ]  (6) 
• exPk  - ~  R R l<<.i<j<~d+l _1 
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in which 

Kv  = z -  lpipj, 1 <~ i < j <. d + 1 (7) 

d + l  

z = 1 - ~ p2 (8) 
/ = 1  

and {-1/2 is the Jacobian of the spin rescaling, determined by ( = z u~ No 
being the number of sites in the sublattice ~ Equation (6) expresses Z as the 
partition function of a (d + 1)-hedral lattice with nearest-neighbor inter- 
actions Kq. These interactions are not all independent, but in view of Eq. (7) 
satisfy the relations 

KvKkt = KikKj, (9) 

where i, j, k, l are all different. 5 It follows that the partition function of an 
initially given (homogeneous) nearest-neighbor Hamiltonian on a (d + 1)- 
hedral lattice has a representation of type (5) only if its interaction parameters 
satisfy the relations (9). If such is the case, then one can obtain the p~ from 
the K~j by inverting Eqs. (7) and (8), which leads to 

Pi --- zl/Z(KijKik/Kjk) 1/2 (1 O) 

d + l  

z -1 = 1 § ~ (KvKtk/Kjk) (1 l) 
/ = 1  

Here the indices j and k are arbitrary [but, of course, j, k 4: i in Eq. (lO), 
j, k # l in Eq. (11), and j # k-I. 

It is sometimes profitable to replace the �89 + l) dependent variables 
K V by the d + 1 independent combinations 

ki = (KvKik/Kik) 1/2, i = 1,..., d + 1 (12) 

Equation (9) guarantees that this definition is independent of the indices j 
and k. The star-triangle transformation reads, in terms of the variables k~ 
and p j, 

k ~ = p l / ( 1 -  ~ p',:)~/= (13) 

and inversely 

Pi = ki 1 + kl 2 (14) 

The �89 + 1) interactions K V are parametrized by d + 1 independent couplings p~. Con- 
sequently, there can be at most �89 + 1) - (d + 1) = ~d - 2)(d + l) independent relations 
of type (9). This may also be verified explicitly. 
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2.4. Der ivat ion of  the RG Equations 

The RG equations are derived by generalizing the star-triangle trans- 
formation of the previous subsection to inhomogeneous Hamiltonians 
defined on the lattices ~ and ~ of Section 2.2. (The finite extent of these 
lattices implies certain boundary conditions that are considered later.) 

We consider an initially given inhomogeneous Gaussian Hamiltonian Jr 
on the lattice ~, 

1 ~o S2(R ) (15) = ~• ~ Kij(R)S(R - ae,)S(R - a e j )  - 

R l < ~ i< j~d+ l  

The nearest-neighbor interactions Kij(R) include the temperature factor 
_ 1/ksT; ~x indicates a summation through all sites of L,~7, and ~~ a sum- 
mation through all sites of 5~. We have adopted the convention of labeling 
each bond Kij by the coordinate of the center of the up-(d + 1)-hedron of 
which it is an edge. The partition function of the system described by Eq. (15) 
can be expressed as 

ZL/o[K] = i] o dS(R) eX (16) 

The subscript L/a is a reminder of the linear dimension of the lattice, and 
K stands for the entire set {KIj(R)}. 

We shall now assume that in every up-(d + 1)-hedron of ~ the inter- 
actions Kij(R ) are restricted by the relations (9), i.e., 

K~j(R)Kkt(R ) = K~k(R)Kj~(R ) for all R (17) 

It is then possible to represent ZL/,,[K] by the partition function of a 
"coupling" Hamiltonian ~ defined on the combined hyperhexagonal lattice 
5e u L,~. To establish this we generalize the results of the previous subsection 
to the inhomogeneous lattice ~. We find 

with 

and 

ZL/ . [K  ] = 1/2 ~o zc,L/o[p] 

r zc,L/o[p] : [i ~ aS(R)  I_ix dS(R) 
�9 )-m It (2X) 1/2 rt (2rt) 1/2 

(18) 

- - e  ~v~ (19) 

d+l 1 ~o,• s2(R ) (20) = ~• ~ p,(R)S(R)S(R - ae,) - 
R i = 1  

in which the couplings pi(R) follow from the Kij(R ) by 

pi(a) = zo~/Z(R - aei)[Kij(R)K~k(R)/K3k(R)] 1/2 (21) 
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d+l t - 1  
zo(R) = 1 + ~ [Ku(R + a e 3 K l k ( R  + a e 3 / K j k ( R  + ae3] (22a) 

1=1 
d+l  

= 1 - ~ plE(R + aez) (22b) 
/=1 

The remark on the indicesj and k following Eq. (11) applies here in the same 
way. Finally, in Eq. (18) 

~o = 1~ ~ zo(a) (23) 

This completes our description of the relation between • and ~ .  
We consider again Eq. (19). By interchanging the two sets of integrations 

and performing those on the spins of ~, we can express zc.r[p] as the parti- 
tion function of a new Hamiltonian ~ defined on ~. To establish this we 
generalize the results of the previous subsection to the down-(d + 1)-hedra of 
the lattice ~. We find 

with 

and 

Zc,L/a[p- ] = ~ ; 1/2 ZL/a_ 1 [K]  

zL/~ Egl = f~o [][* ds(a) a (2~)1/2 exp(~)  

(24) 

(25) 

1 2• S2(R ) (26) = ~ ~ /~u(R)S(R - a e l ) S ( R  - aej)  - ~ . 
R l<~i<j<.d+l 

The first summation in Eq. (26) runs through the centers of all up-(d + 1)- 
hedra in ~, and the interactions ~ j  follow from the Pi by 

/~Ij(R) = z ~  x/2(R - ae l ) z~  l / 2 ( R  - a e j ) p i ( R  - a e j ) p : ( R  - aei) (27) 

d+l 
z• = 1 -- ~ pt2(a) (28) 

l=l  

and finally in Eq. (24) 

~• - [ I  • z• (29) 

Thus we have determined the relation between ~ and ~ .  
Lastly, a uniform dilation of the coordinate system maps a point R 6 Lf 

onto a point R' E ~ '  (see Fig. la) and takes us from ~'~ to Jr ' .  We define 

R '  = R [ L / ( L  - a)] (30a) 

K,'j(R') =/~u(E(L - a ) / L ] R ' )  =/~u(R) (30b) 
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Hence . ~ '  is obtained from ~ by a mere relabeling of the spin variables and 
interaction parameters,  which does not affect their values. In particular, 

ZLI , -  1 [ / ( ]  = ZLi~- 1 [ K ' ]  (31) 

We can now combine the above sequence of mappings J g - +  ~ - - +  
---> ~/g' to obtain a single R G  transformation ~ -+ Dr'. An R G  trajectory 

in Hamiltonian space is then constructed by iterating according to J t  ~ 
J r ' - ->  ~ ' - - +  .... The transformation oug-~ ~ ' ,  however, has been realized 
only under the restrictive conditions (17) on JvtT. Hence in order to be able to 
iterate we have to verify that the interactions K~j(R) [or/~u(R)]  satisfy the 
same restrictions (17) in every u p - ( d +  1)-hedron of 5r [or ~@]. Upon  
employing Eq. (27), we see that this will be true if 

p i (R  - aej)pj(R - aei)pk(R -- aet)pt(R - aek) 

= p i (R  - aek)Pk(R -- aei)p~(R -- aet)pz(R - aej) (32) 

We shall now sketch how the R G  equations can be obtained in explicit 
form. Details of  the calculations are given in an appendix. We assume that 
the functions Kq(R) vary only on a scale L >> a, so that we may consider them 
as continuous functions with gradients of  order 1/L. One can then combine 
Eqs. (30b), (27), (28), (21), and (22) to obtain an expression for K/'j(R) entirely 
in terms of the set {Ku(R)}. After Taylor expansion it appears that 3Kij = 
Ki~ i - K u is of  order a/L .  Setting r = R / L  and 6t = a /L ,  one obtains in the 
limit a / L  -*  0 an expression for c3Ku(r , t)/c3t. The detailed calculations are 
done in Appendix A, where it turns out to be profitable to work with the 
d + 1 independent variables ki [see Eq. (13)]. 

The result is the differential R G  equation 

c~ki(r, t) _ ~ B~2(k). Vk2 - r .  Vk~, i = 1 ..... d + 1 (33) 
~3t j 

with Bij(k) given by Eq. (A7), and where V stands for ~?/0r. The term - r- Vki  
is obviously due to the lattice dilation, Eq. (30b). The R G  equation (33) can 
alternatively be expressed, either via Eq. (14) or by direct derivation (see 
Appendix A), in terms of the variables p~. The result is that we find 

~pi(r, t) 
Ot - ~-' D i j ( P ) "  Vpj  - r .  Vpl , i = 1 ..... d + 1 (34) 

J 

with 

_ 1  p, { d  ~ pk2ek + d(2(~q _ l)e~ Dij(P) d ( d -  1) p~ 

(35) 
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To complete our description of the RG transformation we also cast Eq. (32) 
in differential form, which yields the supplementary conditions 

- -  + ( e  i - -  e l )"  = 0 ( 3 6 )  
Pl / 2 Pj Pk / 

(i, j, k, l all different), to be obeyed by any solution of Eqs. (34) and (35). 
Finally we have to provide boundary conditions. As for the Ising model, ~1'2) 
these follow by requiring that the star-triangle transformation from p to /~  
also hold true along the border of the lattice, where one " leg"  of the star of 
p-bonds is missing. This gives the boundary condition 

pi(r) = 0 for r.e, = �89 + 1)- 1 (37) 

i.e., on the ith hyperplane bordering the lattice. 
In summary, we have obtained a real-space RG transformation con- 

sisting of the d + 1 partial differential equations (34), (35) for the functions 
pi(r, t). The equations have to be solved for given pi(r, 0) in a d-dimensional 
domain of (d + 1)-hedral shape with edges of unit length and center in the 
origin. The boundary conditions (37) have to be imposed, and only those 
solutions that satisfy the supplementary conditions (36) are acceptable as true 
RG trajectories. 

3, A N A L Y S I S  OF THE RG T R A N S F O R M A T I O N  

In this section we analyze the RG transformation, Eqs. (34)-(37). 

3.1. A Fixed Point of  the RG Transformat ion  

Earlier work on the Ising model suggests that we look for a fixed-point 
solution [Pl*(r) ..... p*+ l(r)] of Eqs. (34) and (35) which is linear in the spatial 
coordinate. By explicit verification one can prove that indeed such a solution 
exists and is given by 

pi*(r) = [1/(d + 1)] - 2r.ei, i = 1 ..... d + 1 (38) 

Equation (38) satisfies the boundary conditions (37) as well as the supple- 
mentary conditions (36), and is therefore a fixed-point solution of the RG 
transformation. It represents a particular spatially inhomogeneous hyper- 
hexagonal lattice, which is isotropic in the center and increasingly anisotropic 
toward the borders of the domain. The corresponding (d + 1)-hedral fixed- 
point solution K*(r) is easily obtained from it via Eq. (7). By symmetry one 
can see that Eq. (38) is in fact part of a set of 2 a+I fixed-point solutions, 
viz. [atpl*(r),..., ad+ IP*+ t(r)], where a t = + 1. On the (d + 1)-hedral lattice 
Ki*(r) is replaced correspondingly by aia.~K~(r). Whereas the fixed point (38) 
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is ferromagnetic, the other fixed points represent various kinds of antiferro- 
magnetic lattices. 

3.2. An Invariant  Subspace of Eqs. (34) and (35) 

The fixed point (38) lies in the subspace cg of (d + 1)-plets (Pl ..... Pd+ 1) 
that satisfy 

pl(r) + p2(r) + "'" +pd+l( r )  = 1 (39) 

By straightforward but tedious algebra one can show that the flow generated 
by Eqs. (34) and (35) leaves this subspace invariant, i.e., that under the 
hypothesis (39) we have 0[~z p~(r, t)]/Ot = 0. We remark that the relation 
~z p~ = 1 is exactly the criticality condition for a homogeneous hyper- 
hexagonal lattice 6 with couplings Pl ..... Pal+ 1. We therefore identify the sub- 
space cg defined by Eq. (39) as the critical subspace of the RG transformation 
Fstrictly speaking this name applies only to those trajectories in c~ that satisfy 
Eq. (38)]. For the special case d = 2 the RG equations in the critical subspace 
can be shown (6) to be identical (up to a change of variables) to the analogous 
equations for the Ising model, which in turn were studied in detail by Knops 
and Hilhorst. ~4) 

3.3. A Temperature-L ike  Solut ion of the RG Transformat ion 

Outside of the critical subspace we try to find a special solution of the 
RG transformation by making the ansatz 

pi(r, t) = fl(t)pi*(r) (40) 

withpi*(r) given by Eq. (38). This expression automatically satisfies Eqs. (36) 
and (37). By substitution into Eq. (34) and use of Eq. (35) we find that it is 
indeed a solution of the RG transformation provided that [3(t) satisfies 

dfl/dt = - fl(1 - f12) (41) 

Solving this equation for given fl(0) = flo, we find 

/~(t) = /~oe- '0  - /~o 2 +/~o2e-~') -1/2 (42) 

For flo < 1 the solution (40) decays, therefore, to the trivial infinite-tempera- 
ture fixed pointpi(r) = 0; for flo > 1 it reaches the valuepi(r ) = oo for finite t, 
namely t = - �89  ln(1 - flo2). 

The singular critical behavior of the physical system is related to the 
eigenvalues of the linearized RG transformation. Linearizing Eq. (4) around 
the critical point fl = 1, we see that it has an eigenvalue Yr = 2. This leads 

6 The properties of the homogeneous lattice are most easily obtained by Fourier transformation. 
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to the classical critical exponent v = ! /Yr  = �89 for the correlation functions, 
in agreement with the exact result. 

We conclude this section by remarking that one may show, along the 
lines of Ref. 7, that the eigenvalue Yr is in fact infinitely degenerate in the 
temperature subspace. We do not know, however, whether there exist any 
other eigensolutions, besides the one found above, that satisfy the supple- 
mentary conditions (36). 

4. THE FREE ENERGY 
4.1. Der ivat ion of the Trajectory Integral for the Free Energy 

Quite generally a differential RG equation leads to an expression for the 
free energy as an integral along an RG trajectory. We derive here the formulas 
appropriate to our case. 

From Eqs. (18), (24), and (31) we find that the partition functions of the 
Hamiltonians ~f and Xr are related by 

ZL/,[K] -=- ~o/2(-s 1/2 ZL/._ I[K'] (43) 

The (reduced) free energy FL/.[K ] =-In ZL/.[K ] therefore satisfies the 
recursion relation 

where 

FL/ . [K]  - FL/.- I [ K ' ]  = ( a / L ) G . . [ K ]  (44) 

a 1 ~o In zo(R) - ~• In z• (45) 

Here we have used Eqs. (23) and (29) and anticipated that the rhs of Eq. (45) 
will be of order alL. 

In the limit alL --, 0 the interactions Ku(R ) converge to continuous func- 
tions which, after rescaling coordinates, we denoted as Kij(r). We assume here 
the asymptotic expansions 

= 1 L a (46a) 

= 1  L a L a-1 

Here f is the free energy per site averaged over the (d + 1)-hedral domain. 
Substitution of Eq. (46) into Eq. (44) leads, for a/L--~ O, to the differential 
equation 

Of/Ot = d f  - c (47) 
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The solution 

f [K( r ,  t)] = ea"-~){c[K(r, r)] - df[K(r, oc)]} dr + f [ K ( r ,  oo)] (48) 

reduces for t = 0 to the free energy of the initially given system. 
It remains to derive from Eqs. (45) and (46b) an explicit expression for 

the functional c[K]. In Appendix B we show that this leads to 

1 ~ el. Vpl 0_~ t elK(r)] = ~ dg + r. Vg + dr (49) 

where the integral is on the (d + 1)-hedral domain and V~ is the d-dimensional 
volume of this domain, and where 

9(PI,...,Pa+I) = In 1-t~=lpt 2) (50) 

This completes the results of this subsection : once for a given initial system 
the trajectory Kgj(r, t) has been calculated from the R G  equations, its free 
energy follows from Eqs. (48)-(50). 

4.2. Appl icat ion 

We calculate by the above method the free energy of the special inhomo- 
geneous system with couplings 

[ ,+1 ] 
K}~(r) = flo2pi*(r)pj*(r)/ 1 - flo 2 ~ p*2(r) (51) 

1 = 1  

with pi*(r) given by Eq. (38). The trajectory of this initial state, known from 
Section 3.3, can be described by the single t-dependent parameter B(t). Upon 
using Eqs. (38) and (50) in Eq. (49), we find that we can write 

c[KSp(r, 

Since K/~P(r, oo) = 0, we find from Eqs. (52) and (48) 

f[K'P(r)]: ~--~ fAff e-a'~[dln(l-~2~P~'Z ) 

+flz(l-~p*2)(1-~2~p*2)-l]dtdr (53) 
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We transform to the new variable of integration x ~ e-27. Upon using the 
explicit expression (42) for fl(t) and once applying a partial integration to the 
term with the logarithm in Eq. (53), we find 

fI-K~P(r)] = In 1 - flo 2 ~ p*2(r) dr + rio 2 floZx dx  

(54) 

Finally we compare the result (54) with the solution obtained by the standard 
method of calculating the free energy by diagonalizing the Hamiltonian. For 
the (reduced) free energy per site ofa  (d + 1)-hedral lattice with homogeneous 
couplings Kij this method yields 

(2re)a+ 1 do91 "'" doe+ 1 

x ~ n 1 - 2 ~ Kij cos(coi - ~j )  (55) 
1 <~i <j<~d + 1 

We expect to obtain an alternative expression forfI-KSP(r)] if in Eq. (55) we 
take Kij --- K~jP(r) and average on the domain. The result, slightly rewritten, 
is 

f[KSP(r)] = ~  In 1 - flo 2 p*Z(r) dr 

1 dr  1 de)  1 "'" d ~ a  + 1 
Va (2re) a+l 

• ~ln{1 flo2[a+: ]z [a+: ]2} - pl*(r) cos wt - /?o  z pl*(r) sin co t 
l 1 

(56) 

The last terms both in Eq. (54) and in Eq. (56) represent the average free 
energy (per cell of two spins) of the inhomogeneous hyperhexagonal lattice 
with couplings//op~*(r). We have verified that the two expressions are iden- 
tical for d = 1, and that their high-temperature expansions agree to order/~o 4 
for general d. 

5. C O N C L U S I O N  

We have derived exact RG equations for the d-dimensional Gaussian 
model with nearest-neighbor interactions only. We considered the model on 
a special (d + l)-coordinated lattice. The RG transformation takes the form 
of a set of d + 1 partial differential equations for the nearest-neighbor 
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couplings, which are position dependent. This spatial inhomogeneity is an 
essential feature of the differential position-space method, as discussed exten- 
sively earlier. (2) While being similar in spirit, our present investigation has 
gone beyond the study of  the Ising model of  Ref. 2 in two respects. 

(i) We were able to carry through our method in arbitrary dimension d. 
For  d > 2 one finds that there are supplementary conditions to be satisfied 
by any solution of  the actual RG equations. The role of these conditions is 
to keep the interactions constrained to the nearest-neighbor type. It has been 
shown by van Leeuwen (1~ how our equations can be embedded in a larger 
class of  transformations involving arbitrary pair interactions. Since d is arbi- 
trary, our calculation lays the basis for perturbative treatment of  non- 
Gaussian terms. 7 One can show, in fact, that d = 4 is a marginal dimension, 
as it should be. 

(ii) Unlike in the Ising case, we could obtain a special explicit solution 
of the full nonlinear equations, corresponding to a trajectory from the critical 
to the high-temperature fixed point. 8 We calculated the free energy for an 
arbitrary state on this trajectory by evaluating the RG trajectory integral, 
and verified that the expression thus obtained agrees with the result from 
traditional methods. 

A P P E N D I X  A. DERIVATION OF EQS. (33 ) - (35 )  

In order to obtain Eq. (33) and find the explicit form of B(k), we first 
express/~(R) in the set {ki(R)). From the definition, Eq. (12), where now all 
quantities have the argument R, and from Eqs. (27) and (21) we obtain easily 

with 

/~.2(R) = A i ( R  - a e l ) B i ( R  ) (A1) 

A i ( R  - ae l )  = zo(R - ae i  - ae~)zo(R - ae l  - aek)  (A2) 
zo(R - a e j  - a e k ) z x ( R  - -  aei)] 

Bi(R) = k i ( R  - a e j ) k i ( R  - a e k ) k j ( R  - a e i ) k ~ ( R  - aei )  (A3) 
kj(R - a e k ) k k ( R  - ae j )  

In Eq. (A2) we use Eqs. (28), (21), and (22) to get an expression entirely in 
terms of the ki(R ). On Taylor expanding both this expression and Eq. (A3), 

7 Such a calculation was done by Kadanoff et al., t11) who used a discrete RG transformation 
combined with a bond shifting approximation. 

8 The solutions of the nonlinear Ising RG equations found in Ref. 4 are not temperature-like, 
but lie in the critical subspace. 
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we find 

A i ( R - a e l ) = l +  1+ km 2 

x ~  I(aei--ael)+ ~(ae,--aet)k,,21.Vkz2+ O(aL--y) (A4) 

V k  i 
BI(R) = k;E(R) 1 - (aej + a e k ) . ~ -  i + (aek - aei).V, k~ 

kj 

+ (ae~ - aei). + O (A5) 

Where the coordinate has been suppressed it is equal to R, and V - ~?/QR. 
With the aid of  Eqs. (30a) and (30b), we find the relation between ki'(R) and 
~i(R) to be 

k{(R) =/~i(R) - R. Vk~ + O(aZ/L 2) (A6) 

Substituting Eqs. (A4)-(A6) into Eq. (A1) we obtain an expression for 
ki2(R) - ki2(R). The expression still depends on the arbitrary indicesj and k, 
but we can symmetrize it by applying the operation [d(d- 1)]- i Y.jr ~k#i,~. 
Setting r = R/L, 6ki = k{ - ki, and 6t =- a/L, we then find in the limit a/L --+ 0 
Eq. (33) with Bo(k ) given by 

1 Bij(k) = 1 + kz 2 kik j e i - ej + ~ kk2(ek -- ej) 
k 

+ (d - 1)- ~k~k 21[(26~i - 1)e~ - d -  lej] (A7) 

To obtain Eqs. (34) and (35) one proceeds in an analogous fashion, starting 
from Eqs. (27) and (28) and the analogs of Eqs. (21) and (22) obtained by 
providing all bond parameters with a tilde. Since lattice rescaling commutes 
with the star-triangle transformation, one can first establish the relation 
between/~(R) and the pi(R), and then use that 

p,'(a) = ~ i ( R )  - a .  Vp, + O(a2/L 2) 

A P P E N D I X  B. T H E  F U N C T I O N A L  c[K] 

We derive an explicit expression for the functional c[K] defined by Eqs. 
(45) and (46b). Since the sums in Eq. (45) cancel to leading order, we rewrite 
them as a single summation with summand of order a/L. To this end we define 
for each crossed site R a set o f d  + 1 fractionsf~(R) such that vd+l fi(R) = 1, l..~i = 1 

and split the sum on the crossed sites up accordingly into d + 1 fractional 
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sums : 

a GL/a[K] = l I ~ ~  zo(R) - ~• ~ fz(R) ln z•  (B1) 

1 ~ ~  [ l n  z o ( a ) ~ f l ( R + a e z ) l n z •  1 (B2) 
2R l 

The second equa l i ty  holds  p rov ided  thatf~(R + ae~) --  0 for  R in the Ith bo rde r  
p lane o f  the latt ice.  A convenient  special  choice for the f~(R) sat isfying this 

r equ i rement  is 

f ( R )  = 1/(d + 1) - 2(1 - ad/L)R.ez/L (B3) 

It  is now s t r a igh t fo rward  to use Eqs. (B3), (22b), and  (28) in Eq. (B2). After  
Tay lo r  expand ing  and  tak ing  the l imit  a/L ~ 0 one ob ta ins  Eq. (49). 
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