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Differential Real-Space Renormalization
of the d-Dimensional Gaussian Model
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With the aid of the differential real-space method we derive exact renormalization
group (RG) equations for the Gaussian model in d dimensions. The equations
involve d + 1 spatially dependent nearest-neighbor interactions. We locate a
critical fixed point and obtain the exact thermal critical index y; = 2. A special
trajectory of the full nonlinear RG transformation is found and the free energy
of the corresponding initial state calculated.
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1. INTRODUCTION

It has recently been shown'!? that it is possible within the framework of
real-space renormalization® to rescale a lattice system infinitesimally and thus
obtain a renormalization group (RG) transformation in differential form. In
this way exact RG equations have been derived for the two-dimensional Ising
model. The fact that such equations exist is remarkable. It offers the possi-
bility to study*:2* for the first time the working of an exact RG in a non-
trivial model. In order to further assess the applicability of the differential
real-space renormalization, Van Saarloos et al.®® have used it to study the
Ising chain in a magnetic field, and Yamazaki er al.®'” have studied the two-
and three-dimensional Gaussian models. A recent study of van der Waals
spin systems by Dekeyser and Stella® is inspired by the same ideas.
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In this work we consider the Gaussian model in d dimensions. We extend
the results obtained earlier®” and present details of the calculations.
Although the Gaussian model is trivial, its RG equations are not. By studying
these for general d we prepare the ground for subsequent investigation of
non-Gaussian perturbations.

In two dimensions the differential RG equations were derived for a
hexagonal (or, equivalently, triangular) lattice. In this paper (Section 2) we
consider the appropriate generalization of a hexagonal lattice to d dimensions,
viz. a (d + 1)-hedral lattice, in which each site has d + 1 neighbors. As in the
d =2 case, we work in the space of Hamiltonians with nearest-neighbor
interactions that are spatially dependent on a thermodynamic scale. The RG
transformation can then be expressed as a set of d + 1 partial differential
equations for these interactions [ Eqs. (34)]. For 4 > 2 we find that these equa-
tions have to be supplemented by a set of conditions [Egs. (36)] which restrict
the number of possible solutions.

In Section 3 we obtain a critical fixed-point solution of the RG trans-
formation. We study the behavior of the linearized RG around the fixed point
and obtain the exact thermal critical index y, = 2. We also obtain a special
solution of the full nonlinear RG equations. In Section 4 we derive an expres-
sion for the free energy as the trajectory integral of an explicitly given func-
tion. As an application we calculate the free energy for the special trajectory.
The paper ends with a conclusion (Section 5).

2. DERIVATION OF THE RENORMALIZATION
GROUP EQUATIONS

In this section we derive a differential renormalization group (RG) trans-
formation for the Gaussian model by means of the real-space method. Section
2.1 summarizes the basic idea, which has been more fully exposed in Ref. 2.
In Section 2.2 we describe the d-dimensional lattices that we shalil consider.
In Section 2.3 we derive a star-triangle transformation for such lattices. This
transformation will play an essential role in what follows. In Section 2.4 we
present the actual derivation of the RG equations. This section is concluded
with a summary.

2.1. The Basic Idea

In general an RG transformation is constructed by mapping some
original Hamiltonian #, defined on a given lattice %, onto a new Hamil-
tonian ' defined on a lattice %’ which is identical to % except that it has
a larger lattice constant. In the differential real-space method one takes for
Z and ¥’ two large but finite lattices, defined in a suitably chosen spatial
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domain. In Fig. la the two-dimensional case is shown: ¥ and ¥’ are tri-
angular lattices confined to a triangularly shaped domain of side length L,
and differ only in that . has one more lattice site along each side than %"
The lattice constants are @ and al /(L — a), respectively. Clearly the lattice
%’ can be obtained from the lattice . shown in Fig. 1b by a uniform dilation
in space.

It will be convenient to perform the mapping from J to £’ in two steps:
(i) we first transform J# to a Hamiltonian 4Z defined on .#; this step contains
the essentials of the RG transformation ; (ii) we obtain #" from JZ by a trivial
dilation of the coordinate system.

2.2. The d-Dimensional Lattice

The three-dimensional lattice . can be obtained by layering up L/a + 1
two-dimensional lattices of decreasing size along the x5 axis, as in Fig. 2.
The layer distance is chosen such that nearest neighbors in different layers
are again at distance a. Thus in three dimensions % is a tetrahedral (i.¢., fcc)
lattice confined to a tetrahedrally shaped region of space with side of length L.
In general the d-dimensional lattice & is obtained by layering up L/a + 1
{d — 1)-dimensional lattices of decreasing size along the x, axis. The result is
a “(d + 1)-hedral™ lattice confined to a (d + 1)-hedrally shaped region of
d-dimensional space, with side of length L. The origin of the coordinate
system is chosen in the center of the (4 + 1)-hedron.

The two interpenetrating lattices % and .# form a hexagonal lattice for
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Fig. 1. The two-dimensional case. (a) The lattices & (circles) and %’ (crosses) occupy the same
spatial domain. Their lattice constants are a and aL/(L — a), respectively. (b) The lattice Z
(crosses) goes over into %’ by a uniform dilation in space.
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Fig. 2. The two-dimensional case. Two layers of the lattice & (circles) are shown, as well as
a few sites of the lattice 2.

d = 2 (see Fig. 1b), a diamond lattice for d = 3, and a d-dimensional “hyper-
hexagonal” lattice in the general case. In this lattice, each site of & hasd + 1
nearest neighbors, all located on % and which are at the vertices of an ele-
mentary upward pointing (d + 1)-hedron of % Conversely each site of ¥
is the center of an elementary downward pointing (d + 1)-hedron of Z The
vector distance from a site of . to a neighboring site of & takes d + 1 possible
values that we denote ae, ae,,..., ae,, . The case d = 2 is shown in Fig. 3.
In the general case the vectors e, are given by

e, - (611, elz,..., eld), l= 1,...,d + 1 (1)

Fig. 3. The basis vectors e;, the interactions K;;, and the couplings p;, shown for the two-
dimensional case.
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where
em =0, 1<m<i-2
ey =—(—1oy., )
Clm = s I<m<d
and
o, = [2m(m + 1)] V2 (3)

We have the relations
e e, = d/[2(d + 1)]
ere, = —1/[2d+1)], I[#m 4)

d+1

Y =0
=1

2.3. A Star-Triangle Transformation for the Gaussian Model

The so-called star-triangle transformation for Ising models is well known
and has been described in detail, e.g., by Syozi.® Here we derive an analogous
transformation for Gaussian variables, which will play an essential role in
what follows.

Consider a hyperhexagonal lattice (as defined in the previous subsection)
of infinite size, whose sites R are occupied by Gaussian spins S(R). Let there
be an interaction of strength p, between any pair of nearest-neighbor spins a
distance ae, apart ({ = 1,...,d + 1). The partition function of this system can
be written

C[® . dSR) dS(R)
Z‘L , (2n)”2J [I" G

X exp[ Z” * S?(R) + Z dil PSR — aei)S(R):l (5)

where the indices ° and * distinguish the two sublattices (their sites being
indicated by circles and crosses, respectively, in Figs. 1-3). If in Eq. (5) we
carry out a partial trace on the spins of the sublattice *, and rescale the
remaining spin variables such that in the end all self-interactions S?(R) occur
again with coefficient —1, we find

dS(R)

rgn | g

x exp[ ! z S?(R) + Z Y KyS(R—ae)SR - aej):, (6)

Igi<j<d+1
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in which
Kj=z'pp;, 1<i<j<d+1 (7)
d+1
z=1-— Z P (8)

=1

and {12 is the Jacobian of the spin rescaling, determined by { = z*, N,
being the number of sites in the sublattice °. Equation (6) expresses Z as the
partition function of a (d + 1)-hedral lattice with nearest-neighbor inter-
actions K;;. These interactions are not all independent, but in view of Eq. (7)
satisfy the relations

K; ijl = KK jl ©

where i, j, k, { are all different.’® It follows that the partition function of an
initially given (homogeneous) nearest-neighbor Hamiltonian on a (d + 1)-
hedral lattice has a representation of type (5) only if its interaction parameters
satisfy the relations (9). If such is the case, then one can obtain the p; from
the K;; by inverting Egs. (7) and (8), which leads to

Pi= Zl/z(Kinik/Kjk)l/z (10
a+1

Th=1+ z (Klelk/Kjk) (an
=1

Here the indices j and & are arbitrary [but, of course, j, £ # i in Eq. (10),
J, k #1in Eq. (11), and j # k].
It is sometimes profitable to replace the 3d(d + 1) dependent variables
K;; by the d + 1 independent combinations
k; = (K;Ku/Kj) "', i=1,..,d+1 (12)

Equation (9) guarantees that this definition is independent of the indices j
and k. The star-triangle transformation reads, in terms of the variables £;

and p;,
N 1/2
k; =Pi/<1 - 21’12) (13)
1

/2
Pi =ki/(1 +Zk12) (14)
1

®The 3d(d + 1) interactions K; are parametrized by d + 1 independent couplings p,. Con-
sequently, there can be at most 3d(d + 1) — (d + 1) = {{d — 2)(d + 1) independent relations
of type (9). This may also be verified explicitly.

and inversely
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2.4. Derivation of the RG Equations

The RG equations are derived by generalizing the star-triangle trans-
formation of the previous subsection to inhomogeneous Hamiltonians
defined on the lattices . and .2 of Section 2.2. (The finite extent of these
lattices implies certain boundary conditions that are considered later.)

We consider an initially given inhomogeneous Gaussian Hamiltonian #
on the lattice %

H o= Y K;R)SR — ae)S(R — ae;) — % YOSER)  (15)

R I<i<j<d+1 R
The nearest-neighbor interactions K;;(R) include the temperature factor
—1/ksT; Y™ indicates a summation through all sites of .#, and ¥° a sum-
mation through all sites of % We have adopted the convention of labeling
each bond K;; by the coordinate of the center of the up-(d + 1)-hedron of
which it is an edge. The partition function of the system described by Eq. (15)
can be expressed as

® dSR)
Z, K] = J_ ];[" (Z_n()”lze% (16)

The subscript L/a is a reminder of the linear dimension of the lattice, and
K stands for the entire set {K;(R)}.

We shall now assume that in every up-(d + 1)-hedron of % the inter-
actions K;;(R) are restricted by the relations (9), i.e.,

K;RK,R) = K (R)K,(R)  for all R 17)

It is then possible to represent Z;,[K] by the partition function of a
“coupling” Hamiltonian 5 defined on the combined hyperhexagonal lattice
£ U 2. To establish this we generalize the results of the previous subsection
to the inhomogeneous lattice % We find

ZL/a[K] = Cé/ZZc,L/a[p] (18)

with
® _ dSR) [* . dS(R)

Zc,L/a[p] = J(_w 1;1 (21{)1/2 J‘-m . (2n)1/2 e”c (19)

and
d+1
# =T Y pRSRSR - ae) - 5 T S(R) 20)
R i=1 R

in which the couplings p;(R) follow from the K;(R) by
Pi{R) = Z;/Z(R - aei)[Kij(R)Kik(R)/ K:]'k(R)JI/z (21)
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z,(R) = {1 + di [Ki(R + ae)Ky (R + ae)/Ky(R + ae,)]}_1 (22a)

d+1
=1- Z PR + ae) (22b)
=1
The remark on the indices j and k following Eq. (11) applies here in the same
way. Finally, in Eq. (18)

L=]I2z®) 23)
R
This completes our description of the relation between # and #..

We consider again Eq. (19). By interchanging the two sets of integrations
and performing those on the spins of %, we can express z, ,[ p] as the parti-
tion function of a new Hamiltonian J# defined on .Z To establish this we
generalize the results of the previous subsection to the down-(d + 1)-hedra of
the lattice & We find

Zolp) = (P 2, R 24)
with
~ R
ZL,a_,[K]=j " ()1/)2 exp(7) 25)
and

A=Y Y K RSR-—ae)SR — ae)) Z S*R)  (26)

R i<i<jsd+1 2%
The first summation in Eq. (26) runs through the centers of all up-(d + 1)-
hedra in . and the interactions I?ij follow from the p; by
Kij(R) = Z;UZ(R - aei)Z;”z(R - aej)pi(R - aej)pj(R — ae;) (27)

d+1

z, R)=1-= 3 p’R) (28)

=1

and finally in Eq. (24)
(o =]]" z.(R) (29)

R

Thus we have determined the relation between #, and
Lastly, a uniform dilation of the coordinate system maps a point R € &
onto a point R’ € &’ (see Fig. 1a) and takes us from # to s#’. We define

=R[L/L - a)] (30a)
KiR) = K([(L - a)/LIR) = K(R) (30b)
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Hence # is obtained from # by a mere relabeling of the spin variables and
interaction parameters, which does not affect their values. In particular,

ZL/a~1[1€] = ZL/a~1[K,] (31)

We can now combine the above sequence of mappings # — # —
# — #' to obtain a single RG transformation # — #'. An RG trajectory
in Hamiltonian space is then constructed by iterating according to # —
H' — #" — .... The transformation # — ', however, has been realized
only under the restrictive conditions (17) on . Hence in order to be able to
iterate we have to verify that the interactions Kj(R) [or I?ij(R)] iatisfy the
same restrictions (17) in every up-~(d + 1)-hedron of %’ [or £]. Upon
employing Eq. (27), we see that this will be true if

pi(R — ae;)p (R — ae;)p,(R — ae;)p,(R — ae;)
=p:(R — ae)p (R — ae;)p;(R — ae,)p,(R — ae;) (32)

We shall now sketch how the RG equations can be obtained in explicit
form. Details of the calculations are given in an appendix. We assume that
the functions K;;(R) vary only on a scale L > a, so that we may consider them
as continuous functions with gradients of order 1/L. One can then combine
Egs. (30b), (27), (28), (21), and (22) to obtain an expression for K;(R)entirely
in terms of the set {K;;(R)}. After Taylor expansion it appears that JK;; =
K{; — K;; is of order a/L. Setting r = R/L and Jr = a/L, one obtains in the
limit a/L — 0 an expression for 0K;(r, t)/0t. The detailed calculations are
done in Appendix A, where it turns out to be profitable to work with the
d + 1 independent variables k; [see Eq. (13)].

The result is the differential RG equation

dk(x, f)
a1

with B,;(k) given by Eq. (A7), and where V stands for /0r. The term —r- Vk;
is obviously due to the lattice dilation, Eq. (30b). The RG equation (33) can
alternatively be expressed, either via Eq. (14) or by direct derivation (see
Appendix A), in terms of the variables p;. The result is that we find

api(rr l)

=ZB,J(k)'VkJ—r'Vkl, I = 1,,d+ 1 (33)
i

” =ZDij(p)-ij——r-Vp,~, i=1,..,d+1 (34)
(9} N
J
with
Dyp) = LAY ple, +d26, — e,
ij d(d— l)pj - k %k ij i

+ [Z pl—dd+ p? — l:lej} (35)
k
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To complete our description of the RG transformation we also cast Eq. (32)
in differential form, which yields the supplementary conditions

Vp, Y, Vp, ¥V
(ej—eﬁ-(ﬁ—ﬂ)+(ei—e,)-(ﬁ—ﬂ>=0 (36)
i 1 pj Pi

(@, J, k, | all different), to be obeyed by any solution of Egs. (34) and (35).
Finally we have to provide boundary conditions. As for the Ising model,*+?
these follow by requiring that the star-triangle transformation from p to K
also hold true along the border of the lattice, where one “leg” of the star of
p-bonds is missing. This gives the boundary condition

pi(r) =0 forr-e; = %(d + 1)—1 37

i.e., on the ith hyperplane bordering the lattice.

In summary, we have obtained a real-space RG transformation con-
sisting of the d + 1 partial differential equations (34), (35) for the functions
pir, ). The equations have to be solved for given p,(r, 0) in a d-dimensional
domain of (d + 1)-hedral shape with edges of unit length and center in the
origin. The boundary conditions (37) have to be imposed, and only those
solutions that satisfy the supplementary conditions (36) are acceptable as true
RG trajectories.

3. ANALYSIS OF THE RG TRANSFORMATION

In this section we analyze the RG transformation, Egs. (34)-(37).

3.1. A Fixed Point of the RG Transformation

Earlier work on the Ising model suggests that we look for a fixed-point
solution [p *(r),..., p¥. 1 (r)] of Egs. (34) and (35) which is linear in the spatial
coordinate. By explicit verification one can prove that indeed such a solution
exists and is given by

PO =[1(d+ 1] —2re, i=1..,d+]1 (38)

Equation (38) satisfies the boundary conditions (37) as well as the supple-
mentary conditions (36), and is therefore a fixed-point solution of the RG
transformation. It represents a particular spatially inhomogeneous hyper-
hexagonal lattice, which is isotropic in the center and increasingly anisotropic
toward the borders of the domain. The corresponding (d + 1)-hedral fixed-
point solution K*(r) is easily obtained from it via Eq. (7). By symmetry one
can see that Eq. (38) is in fact part of a set of 2" ! fixed-point solutions,
viz. [0, p, ¥ (X),..., 044 P, 1(r)], where ¢, = +1. On the (4 + 1)-hedral lattice
K X(r) is replaced correspondingly by 6,0 K/%(r). Whereas the fixed point (38)
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is ferromagnetic, the other fixed points represent various kinds of antiferro-
magnetic lattices.

3.2. An Invariant Subspace of Egs. (34) and (35)

The fixed point (38) lies in the subspace € of (d + 1)-plets (py...., par,)
that satisfy

Pi(r) +po(®) + -+ pap(r) =1 (39)

By straightforward but tedious algebra one can show that the flow generated
by Egs. (34) and (35) leaves this subspace invariant, i.e., that under the
hypothesis (39) we have 23, p(r, 1)]/0t = 0. We remark that the relation
Y, py=1 is exactly the criticality condition for a homogeneous hyper-
hexagonal lattice® with couplings py,..., p44 1. We therefore identify the sub-
space ¥ defined by Eq. (39) as the critical subspace of the RG transformation
[strictly speaking this name applies only to those trajectories in 4 that satisfy
Eq. (38)]. For the special case d = 2 the RG equations in the critical subspace
can be shown‘® to be identical (up to a change of variables) to the analogous
equations for the Ising model, which in turn were studied in detail by Knops
and Hilhorst.¥

3.3. A Temperature-Like Solution of the RG Transformation

Outside of the critical subspace we try to find a special solution of the
RG transformation by making the ansatz

pilr, 1) = f@)p*(r) (40)

with p;*(r) given by Eq. (38). This expression automatically satisfies Egs. (36)
and (37). By substitution into Eq. (34) and use of Eq. (35) we find that it is
indeed a solution of the RG transformation provided that f(z) satisfies

dpjdt = — p(1 — p?) (41)
Solving this equation for given (0) = f,, we find
Bt) = Boe (1 — Bo® + Bo*e ™) 7112 (42)

For 8, < 1 the solution (40) decays, therefore, to the trivial infinite-tempera-
ture fixed point p;(r) = 0; for B, > 1 it reaches the value p;(r) = oo for finite ¢,
namely t = —3In(1 — B52).

The singular critical behavior of the physical system is related to the
eigenvalues of the linearized RG transformation. Linearizing Eq. (4) around
the critical point § = 1, we see that it has an eigenvalue y, = 2. This leads

© The properties of the homogeneous lattice are most easily obtained by Fourier transformation.
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to the classical critical exponent v = 1/y, = £ for the correlation functions,
in agreement with the exact result.

We conclude this section by remarking that one may show, along the
lines of Ref. 7, that the eigenvalue y; is in fact infinitely degenerate in the
temperature subspace. We do not know, however, whether there exist any
other eigensolutions, besides the one found above, that satisfy the supple-
mentary conditions (36).

4. THE FREE ENERGY
4.1. Derivation of the Trajectory Integral for the Free Energy

Quite generally a differential RG equation leads to an expression for the
free energy as an integral along an RG trajectory. We derive here the formulas

appropriate to our case.
From Egs. (18), (24), and (31) we find that the partition functions of the

Hamiltonians # and #' are related by
ZL/a[K] = Cé/zé’;l/zzua‘ 1K) 43)

The (reduced) free energy F;,[Kl1=InZ,,[K] therefore satisfies the
recursion relation

F K] — Fp, [K'] = (a/L)G,,[K] (44)

where
@6 K] =11y ma® oz @) | 45
£ GrlK] =3 | Tl z® = T o 5,(R) | @s)

Here we have used Egs. (23) and (29) and anticipated that the rhs of Eq. (45)
will be of order a/L.

In the limit a/L — O the interactions K;;(R) converge to continuous func-
tions which, after rescaling coordinates, we denoted as K;;(r). We assume here
the asymptotic expansions

FulK] =%(§) FIK@) + O[@ ] (46a)

G.lK] =EIT<§) clK(r)] + 0[(—3) . :I (46b)

Here f is the free energy per site averaged over the (d + 1)-hedral domain.
Substitution of Eq. (46) into Eq. (44) leads, for a/L — 0, to the differential
- equation

ofjot = df — ¢ (47)
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The solution

SIK(r, )] = J el Ne[K (r, 1)] — df[K(r, 0)]} dv + f[K (x, c0)] (48)
t : ’
reduces for ¢ = 0 to the free energy of the initially given system.

It remains to derive from Egs. (45) and (46b) an explicit expression for
the functional ¢[K]. In Appendix B we show that this leads to

c[K(n)] = ; J (dg +r-Vg+ Ze, Vp,;p )dr (49)

where the integral is on the (d + 1)-hedral domain and V, is the d-dimensional
volume of this domain, and where

1 d+1
9P1ss Par1) = 5111(1 - Z 1712) (50)
=1
This completes the results of this subsection: once for a given initial system

the trajectory K;(r, ) has been calculated from the RG equations, its free
energy follows from Eqgs. (48)-(50).

4.2. Application

We calculate by the above method the free energy of the special inhomo-
geneous system with couplings

d+1
KB = Bo’p(r p,*(r)/[l — Bo? Z i 2(r)] (51)

with p;*(r) given by Eq. (38). The trajectory of this initial state, known from
Section 3.3, can be described by the single r-dependent parameter (¢). Upon
using Egs. (38) and (50) in Eq. (49), we find that we can write

c[K*®(r, )] = —Ii— L%[d ln(l - By p,*2>
f ]

+ ﬁz(l -2 Pz"Z)(l -8 pz’”)_l] dr (52)

Since K{P(r, c0) = 0, we find from Egs. (52) and (48)

SIK*@®)] = - f [d 1n< - Pz*2>

" /;z<1 -y p,*Z)<1 gy p,*Z)— } ad (53)
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We transform to the new variable of integration x = e~ 2 Upon using the
explicit expression (42) for f(¢) and once applying a partial integration to the
term with the logarithm in Eq. (53), we find

K P __1 11 1 — 2 *2( d-i—lﬁz ! x4 d
SRR = g | i) 1= B0? St fab 3807 |

(54)

Finally we compare the result (54) with the solution obtained by the standard
method of calculating the free energy by diagonalizing the Hamiltonian. For
the (reduced) free energy per site of a (d + 1)-hedral lattice with homogeneous
couplings K;; this method yields

1 2n 27
FUK;}) = Ty T J dm, J dwy,

0 0

x l111[1 -2 Y Kjcos(w; — co,-)] (55)

2 1<i<j<d+1

We expect to obtain an alternative expression for f[K*(r)] if in Eq. (55) we
take K;; = K{¥(r) and average on the domain. The result, slightly rewritten,
is

1 1
SRR = 5 J 5 ln[l ~ Bo? zp:”(r)] dr

1 1 271 2n
- . el d
7, ) f oy J Was

1 d+1 2 d+1 2
x 5 ln{l - ﬁoz[ z p*(r) cos a)l] - ﬁoz[ Z p*(r) sin wl:’ }
=1 1=1
(56)

The last terms both in Eq. (54) and in Eq. (56) represent the average free
energy (per cell of two spins) of the inhomogeneous hyperhexagonal lattice
with couplings f,p;*(r). We have verified that the two expressions are iden-
tical for d = 1, and that their high-temperature expansions agree to order f8,*
for general d.

5. CONCLUSION

We have derived exact RG equations for the d-dimensional Gaussian
model with nearest-neighbor interactions only. We considered the model on
a special (d + 1)-coordinated lattice. The RG transformation takes the form
of a set of d+ 1 partial differential equations for the nearest-neighbor
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couplings, which are position dependent. This spatial inhomogeneity is an
essential feature of the differential position-space method, as discussed exten-
sively earlier.””’ While being similar in spirit, our present investigation has
gone beyond the study of the Ising model of Ref. 2 in two respects.

(i) We were able to carry through our method in arbitrary dimension d.
For d > 2 one finds that there are supplementary conditions to be satisfied
by any solution of the actual RG equations. The role of these conditions is
to keep the interactions constrained to the nearest-neighbor type. It has been
shown by van Leeuwen'® how our equations can be embedded in a larger
class of transformations involving arbitrary pair interactions. Since d is arbi-
trary, our calculation lays the basis for perturbative treatment of non-
Gaussian terms.” One can show, in fact, that d = 4 is a marginal dimension,
as it should be.

(i1) Unlike in the Ising case, we could obtain a special explicit solution
of the full nonlinear equations, corresponding to a trajectory from the critical
to the high-temperature fixed point.® We calculated the free energy for an
arbitrary state on this trajectory by evaluating the RG trajectory integral,
and verified that the expression thus obtained agrees with the result from
traditional methods.

APPENDIX A. DERIVATION OF EQS. (33)—(35)

In order to obtain Eq. (33) and find the explicit form of B(k), we first
express k;(R) in the set {k:(R)}. From the definition, Eq. (12), where now all
quantities have the argument R, and from Eqgs. (27) and (21) we obtain easily

k(R) = A,(R — ae;)B(R) (A1)
with

z,(R — ae; — ae )z (R — ae; — ae;)
AR — ae;)) = J -
i ae) Zo(R — ae; — ae,)z (R — ae;)] (42)

_ kiR — aepk(R — ae )k (R — ae)ky(R — ae)
B/(R) = kiR — ae )k, (R — ae)) (A3)

In Eq. (A2) we use Egs. (28), (21), and (22) to get an expression entirely in
terms of the &;(R). On Taylor expanding both this expression and Eq. (A3),

7 Such a calculation was done by Kadanoff er a/.,* ) who used a discrere RG transformation
combined with a bond shifting approximation.

& The solutions of the nonlinear Ising RG equations found in Ref. 4 are not temperature-like,
but lie in the critical subspace.



624 Yoshitake Yamazaki, Henk J. Hilhorst, and Ginther Meissner

we find

-1
AR —ae) =1+ (1 + kaz)

Xy [(aei — ae)) + ) (ae, — ae,)k,,Z—I-Vl’c,2 + O(%;) (A4)

n

Vi, .
Bi(R) = k2(R)| 1 — (ae; + ae,) " + (ae, — ae)- "2
ki kJ
Yk a®
+ (ae; — ae,.)-#] + O(P) (A5)

Where the coordinate has been suppressed it is equal to R, and V = J/0R.
With the aid of Eqs. (30a) and (30b), we find the relation between &,/ (R) and
k,(R) to be

k{(R) = k(R) — R-Vk; + O(a*/L?) (A6)

Substituting Eqs. (A4)-(A6) into Eq. (A1) we obtain an expression for
k;2(R) — k;>(R). The expression still depends on the arbitrary indices j and &,
but we can symmetrize it by applying the operation [d(d — 1)]7' ¥,.; Sy vi -
Settingr =R/L, ok; =k; — k;, and ot = a/L, we then find in the limit a/L — 0
Eq. (33) with B;;(k) given by

B;(k) = <1 +) klz>'1kikj|:ei —e;+ ) k(e — ej)}
b (d ~ 1)k [(26; — D, — de] (A7)

To obtain Egs. (34) and (35) one proceeds in an analogous fashion, starting
from Egs. (27) and (28) and the analogs of Eqs. (21) and (22) obtained by
providing all bond parameters with a tilde. Since lattice rescaling commutes
with the star-triangle transformation, one can first establish the relation
between p;(R) and the p;(R), and then use that

p/(R) = pi(R) — R-Vp; + O(a*/L?)

APPENDIX B. THE FUNCTIONAL c[K]

We derive an explicit expression for the functional ¢[K ] defined by Egs.
(45) and (46b). Since the sums in Eq. (45) cancel to leading order, we rewrite
them as a single summation with summand of order a/L. To this end we define
for each crossed site R a set of d + 1 fractions f;(R) such that Y92} £i(R) = 1,
and split the sum on the crossed sites up accordingly into d + 1 fractional
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sums:

%GL,,,[K] = [Z In z (R)—Z* ;f, R)Inz, R)] (B1)

- %Zo [ln zR) =Y /iR +ae)lnz, (R + ae,)] (B2)

The second equality holds provided that f;(R + «e;) = 0 for Rin the /th border
plane of the lattice. A convenient special choice for the f;{R) satisfying this
requirement is

f(R) =1/(d+ 1) — 2(1 — ad/L)R-e;/L (B3)

It is now straightforward to use Eqs. (B3), (22b), and (28) in Eq. (B2). After
Taylor expanding and taking the limit a/L — 0 one obtains Eq. (49).
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